Устройства плавного пуска электродвигателя: функции, виды и стоимость решений

Главные недостатки электродвигателя проявляются в момент его запуска — высокий пусковой ток и значительная нагрузка на механические узлы приводимого в действие оборудования. Решение этих проблем — устройство плавного пуска. О том, как его выбрать и какие задачи оно решает, мы расскажем в данной статье.

Современный мир — это мир высоких скоростей, а значит — двигателей… внутреннего сгорания, ядерных, пневматических… и наконец, электродвигателей — постоянного и переменного тока, синхронных и асинхронных. В промышленности наибольшее распространение получил асинхронный двигатель переменного тока. Он появился в конце XIX столетия и стал активно использоваться уже в начале ХХ века благодаря простоте устройства, неприхотливости в эксплуатации, работе от сети трехфазного переменного тока, относительно высокому КПД и экологической безопасности. Однако сегодня в своем традиционном исполнении он перестал отвечать требованиям рынка: из-за крайне высокого пускового тока асинхронного двигателя в момент его запуска создается очень высокая нагрузка на питающую сеть, что приводит к падению напряжения в последней, а значит — к ухудшению качества электрической энергии. В итоге повышается вероятность возникновения проблем в работе всех устройств и приборов, подключенных к этой сети. Кроме того, из-за резкого рывка при запуске сокращается срок службы механических узлов приводимого в действие оборудования. Для устранения этих недостатков и были созданы устройства плавного пуска (УПП).

УПП: функции и возможности

Итак, что же такое УПП, какую пользу оно может принести? Для решения проблемы необходимо сначала выявить ее причину. В нашем случае она одна: обычно напряжение питания на двигатель подается скачкообразно с 0 В до номинального напряжения питания. В силу того, что обмотка статора двигателя имеет малое омическое сопротивление, а рабочее индуктивное сопротивление двигателя устанавливается только в момент, когда устройство выходит в «режим», в промежуток времени с момента включения в сеть до выхода двигателя в «режим» сопротивление очень мало и сила тока сильно возрастает. Отсюда и получаем высокий пусковой ток, который достигает 6–8-кратного (а порой и 10–12-кратного) увеличения номинального тока потребления.

С учетом этого запуск электродвигателя возможен только в том случае, если мощность источника тока достаточна. На практике такое бывает не всегда, и зачастую мощности источника питания недостаточно для того, чтобы обеспечить столь высокий ток. В результате напряжение в питающей сети падает, как еще говорят, «подсаживается». Чрезмерное увеличение тока и «подсаживание» напряжения не проходит бесследно, и с этим приходится бороться, что выливается в дополнительные финансовые затраты.

Другой недостаток пуска напрямую от сети — высокие нагрузки на механические узлы — возникает по той же причине: скачкообразная подача напряжения питания. Поскольку ток пуска высокий, крутящий момент может достичь 150–200% от номинального, при этом приводимые механизмы двигателя в момент запуска покоятся, а механические узлы испытывают многократные нагрузки. Для предотвращения поломок производитель или потребитель вынужден закладывать дополнительный запас прочности, что опять же сказывается на стоимости оборудования.

Ключ к решению проблемы — плавные подача напряжения и разгон двигателя до номинальных режимов. Эти задачи и призвано решить устройство плавного пуска (УПП).

Использование УПП позволяет:

  • уменьшить пусковые токи;
  • снизить вероятность перегрева электродвигателей;
  • повысить срок их службы;
  • устранить рывки в механической части электропривода в момент запуска электродвигателей, а также гидравлические удары в трубопроводах и задвижках в момент пуска и остановки насосов.

Принцип действия устройства плавного пуска асинхронного электродвигателя

Простейшее УПП основано на свойстве полупроводниковых приборов — тиристоров (а они и являются основным конструктивным элементом УПП) — проводить ток после подачи на соответствующий вход управляющего напряжения и «закрываться» при прохождении значения тока через ноль. Тиристоры соединяются по встречной (симисторной) схеме для каждой из фаз трехфазной системы. В нужные моменты времени на управляющие электроды всех тиристоров подается управляющее напряжение, «открывающее» их, благодаря чему напряжение на силовых клеммах электродвигателя оказывается возможным регулировать. Так как крутящий момент электродвигателя является функцией квадрата приложенного напряжения, появляется возможность регулировать и механические нагрузки в электроприводе. Возможность регулирования напряжения позволяет также плавно останавливать электродвигатели, приводящие в действие низкоинерционные нагрузки.

Однако описанные устройства имеют и ощутимые недостатки:

  • справляются только с невысокими нагрузками или запуском двигателя вхолостую;
  • при увеличении времени запуска появляется опасность перегрева двигателя, полупроводниковые элементы УПП также могут перегреться и выйти из строя;
  • снижение напряжения влечет за собой снижение крутящего момента на валу.

Более совершенные устройства характеризуются отсутствием указанных недостатков и делятся по принципу действия на амплитудные и частотные. Последние дороже и сложнее в установке/наладке, но их использование оправдывает себя при эксплуатации в условиях, когда для решения поставленных задач необходимо изменять скорость вращения электродвигателя.

Виды УПП

Можно выделить два основных типа УПП:

  • Регуляторы напряжения без функции обратной связи.
  • Регуляторы напряжения с функцией обратной связи.

Рассмотрим каждый из них подробнее.

Регуляторы напряжения без обратной связи. Наиболее распространенный вид устройств плавного пуска. Регулировка здесь может производиться по двум или трем фазам, но только по заранее заданной пользователем программе, в которой указывается время и начальное напряжение запуска. Пусковой ток и момент уменьшаются, есть возможность плавного останова, но не регулируется момент в зависимости от нагрузки на двигатель.

Регуляторы напряжения с обратной связью. Усовершенствованный вариант предыдущей группы. Контролируют фазовый сдвиг между напряжением и током в обмотках статора и используют полученные данные для регулировки напряжения на клеммах двигателя таким образом, чтобы запуск гарантированно произошел с наименьшим значением пускового тока и достаточным значением механического крутящего момента. Также полученные данные используются для работы защит от перегрузки, дисбаланса фаз и пр.

Прогресс не стоит на месте
Существуют УПП, имеющие следящие цепи, которые позволяют контролировать нагрузку в каждый конкретный момент времени (то есть подходят для приводов, характеризующихся тяжелыми и очень тяжелыми пусковыми режимами, для которых обычно рекомендуется использовать преобразователи частоты). Дополнительно такие УПП позволяют эффективно решить задачи снижения энергопотребления.
Электромагнитный пускатель ПМ12-040 TEXENERGO

Электромагнитный пускатель ПМ12-040 TEXENERGO

Электромагнитные пускатели ПМ12 предназначены для пуска и останова асинхронных двигателей с короткозамкнутым ротором.

От 1306 ₽

Подробнее

Применение устройств плавного пуска

УПП могут применяться везде, где используется электродвигатель, однако выбор нужно производить исходя из нагрузки двигателя и частоты запусков.

Если нагрузка на двигатель невелика, а его запуск производится редко (например, в шлифовальных станках, некоторых вентиляторах, роторных дробилках, вакуумных насосах), подойдут регуляторы без обратной связи либо вообще регуляторы пускового момента.

Если высокая нагрузка сочетается с частым и инерционным запуском (как в ленточной пиле, центрифуге, сепараторе, распылителе, лебедке, вертикальном конвейере), целесообразным будет выбор регуляторов напряжения с обратной связью, возможно, с запасом по номиналу.

Интересный факт
В Европе законодательно запрещено запускать электродвигатели мощностью 15 кВт и выше, если они не оснащены устройствами плавного пуска.

Цены на софтстартеры

В последние годы цены на софтстартеры весьма нестабильны. Стоимость импортных и многих отечественных изделий, выпускающихся под российскими брендами в Юго-Восточной Азии либо изготавливающихся в России из импортных комплектующих, значительно выросла, в частности, из-за колебаний валютного курса.

В зависимости от характеристик стоимость УПП может начинаться от 7 тысяч рублей, а цены на некоторые изделия достигают 700 тысяч рублей и более, но в этом случае максимально допустимый номинальный ток может доходить до 1200 А.